01 3 Min - Max Theory and the Willmore Conjecture

نویسنده

  • ANDRÉ NEVES
چکیده

In 1965, T. J. Willmore conjectured that the integral of the square of the mean curvature of a torus immersed in R is at least 2π. We prove this conjecture using the min-max theory of minimal surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOME HYPER K-ALGEBRAIC STRUCTURES INDUCED BY MAX-MIN GENERAL FUZZY AUTOMATA

We present some connections between the max-min general fuzzy automaton theory and the hyper structure theory. First, we introduce a hyper BCK-algebra induced by a max-min general fuzzy automaton. Then, we study the properties of this hyper BCK-algebra. Particularly, some theorems and results for hyper BCK-algebra are proved. For example, it is shown that this structure consists of different ty...

متن کامل

An approach to the Willmore conjecture

We highlight one of the methods developed in [6] to give partial answers to the Willmore conjecture, and discuss how it might be used to prove the complete conjecture. The Willmore conjecture, dating from around 1965, asserts that the integral of the square of the mean curvature H over a torus immersed in R3 (with the induced metric) should always be at least 2π2: W := ∫ T 2 H ≥ 2π. A weaker lo...

متن کامل

On a modified conjecture of De Giorgi

We study the Γ -convergence of functionals arising in the Van der Waals-Cahn-Hilliard theory of phase transitions. The corresponding limit is given as the sum of the area and the Willmore functional. The problem under investigation was proposed as modification of a conjecture of De Giorgi and partial results were obtained by several authors. We prove here the modified conjecture in space dimens...

متن کامل

Generalized Weierstrass Formulae, Soliton Equations and Willmore Surfaces I. Tori of Revolution and the Mkdv Equation

A new approach is proposed for study structure and properties of the total squared mean curvature W of surfaces in R 3. It is based on the generalized Weierstrass formulae for inducing surfaces. The quantity W (Will-more functional or extrinsic Polyakov action) is shown to be invariant under the modified Novikov–Veselov hierarchy of integrable flows. It is shown that extremals of W (Willmore su...

متن کامل

The Willmore Conjecture for immersed tori with small curvature integral

The Willmore conjecture states that any immersion F : T 2 → Rn of a 2-torus into euclidean space satisfies ∫ T 2 H 2 ≥ 2π2. We prove it under the condition that the Lp-norm of the Gaussian curvature is sufficiently small.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013